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For .1. a triangulated d-dimensional region in R.I. let S;"(.1) be the vector space
of all C functions F on .1 such that for any simplex (J ELl. FI" is a polynomial of
degree at most m. 5~,(11) is the often studied vector space of splines on .1 of degree
m and smoothness r. We define S'(.1) = Urn 5;,,(.1). S'(.1) is a module over the
polynomial ring R[x, • .... x,,]. In certain cases a module basis for 5'(A) provides
vector space bases for the corresponding 5;"(.1) via simple linear algebra. In this
work we examine that relationship and consider techniques for finding module
bases of spaces 5'(A).

A basis for S'(.1) is reduced if every element Fin 5'(11) can be represented using
only basis elements of degree less than the degn:e of F. We show the relationship
between the dimension of the spaces S~,(.1) and the degrees of the reduced basis
elements of S'(I1). Ths result leads to techniques for finding module bases. These
techniques are used to find module bases for spline spaces on cross-cut grids.
c 1991 Academic Pre5s, Inc

1. II'TRODUCTIO,,", A,,",n OUTU,,",E

Let Dc IR d be a connected d-dimensional domain and ,1 a finite
d-dimensional complex that subdivides D (e.g., let ,1 be a simplicial com
plex). For technical convenience we assume that ,1 is pure, i.e., that each
maximal face of ,1 is d-dimensional. When only one complex ,1 is given for
a particular domain D we often use A to denote the underlying domain D.
For any non-negative integers rand m define 5:,(,1) to be the set of all
piecewise polynomial functions on A of degree at most m and which are
smooth of order r. Precisely, 5;,,(,1) is the set of all functions F: A --+ :R such
that FI" is a polynomial of degree at most m for each simplex (J E A and
F is continuously differentiable of order r. Such a function F is a spline or
finite element. The space S;,,(,1) is a vector space over IR.
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Splines are used most commonly to approximate functions. Traditionally
they have been used by numerical analysts for approximating solutions to
differential equations. More recently splines have played an important role
in the creation of computer graphics.

It is of interest to find bases for the spaces S;,.( A). Recently, work has
been done to establish the dimension and bases for S~,(A) for various m,
r, and A [1,2,10,12,13,16].

We define S'(A) = Um S;"(,1). S'(A) is a module over the polynomial ring
!R[x l , ... , Xii] [4]. It can be insightful to consider this algebraic structure
instead of the vector spac~s. In certain cases a module basis for S'(A)
provides vector space bases for the corresponding S~n(A) via simple linear
algebra. In this work we examine that relationship and consider techniques
for finding module bases of spaces S'(,1). Section 2 gives some general
considerations about the relationship between the vector spaces and the
modules. In Section 3 the special case in which S'(,1) is a graded module
is examined and in Section 4 this work is extended to when A is a cross-cut
grid in 2-dimensions. Section 5 concludes with some additional remarks
and extensions.

2. VECTOR SPACE BASES AND REDUCED FREE MODULI-: BASES

Throughout most of this work we are concerned with spaces S'(A) that
are free modules, i.e., a module that has a basis whose elements are linerly
independent. The rank of a free module is the number of elements in its free
basis. When S'(,1) is free its rank is Id' the number of d-faces in A [11].
A basis {hi} is reduced if FES'(,1) and degF=t then F='LI.ih, such that
deg I.,h, ~ t.

In this section we examine the relation between reduced free bases for
Sr,(,1) and vector space bases for S;"(,1). Suppose that B= {hi' ..., hIT} is a
reduced module basis for the module A, with degree h, = d,. Then the
vector space Am = {a E A Ideg a ~ m} has basis {hixjyk Id, +.i + k ~ m}.
This is clear since if a E A and deg a ~ m then

a = L rJ.ijkxjykh"
d,+)+k~m

where rJ.ijkE R
We next use combinatorial arguments to determine some properties of

the dimensions and the bases for the module 5'(.1). Let B= {hI' b2 , ••• , bv }

be a reduced free basis of S'(A). Define g,=I{hj:degbj=i}l, for
i = 0, I, 2, ... , i.e., g, is the number of basis elements of degree i. By the
definition of reduced free bases any FE S;"(A) can be expressed uniquely as
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F=r.;.,h j such that deg;.A~m, i.e., deg;.,~(m-deghj)' Thus the
dimension of S'(II) is given by

(2.1 )

Define D'(m)=D'(dimS~,(II)) to be the ith difference of dim S:-n(II) with
respect to m, that is, DO(m) = dim S~n(II), and recursively define D' + I (m) =
D'(m) - D'(m - I). From Eq. (2.1) we get

m (m-i+d\
DO(m) = I~O gj d)

m (m-i+d-I)
D'(m)= ,~o K, d-I

. m (m-i+d-2)
D'(m)=I Ki d-'

,-0 }

m

i .-- 0

For m < 0, dim S;-,,(11) = O. We can extend these differences to the cases
where m < 0 by defining the empty sum to be O. Consequently, all the gi
values for i=O, I, ... are given by the (d+ I)st differences.

THEOREM 2.3. For any 11, if S'(II) has a free reduced hasis then the
degrees of the reduced hasis elements are given hy the (d + 1)st differences of
dim S:-n(II).

COROLLARY 2.4. For any space 5'(11), if the (d + I )st differences of
dim S:'(II) are not all greater than or equal to zero then S'(II) does not have
a reduced free hasis.

EXAMPLE A. d-dimensional complex 11 is stacked if it has no interior
faces of dimension less than d - 1. For an example, see Fig. 1a. As a trivial
example, we note that for d = I any complex is stacked. In this case it is
relatively easy to construct a basis for the A-module 5'(11) and hence to
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FIG. I. A stacked complex and its associated graph.

construct a basis for the vector spaces S~,(J). The dimension of S:,(J),
when J is stacked, is given by

(rn+d) (rn-r-I +d)dimS:,(J)= d +([,,-1) d ' (2.5 )

where fd is the number of d-faces in J. Taking d + I differences we find that
there will be one basis element of degree 0 and /" - I of degree r + I.

Define the dual graph, G = (V, E), of the complex as follows. For each
(J E J d' associate a vertex I'" E V and for each r = (J I n (J 2 in J ~_ I' there is
an edge (v "I' v,,) E E. For a stacked complex J the associated graph G will
be a tree. Figure I shows a stacked complex ,1 the associated graph.
Choose any vertex v' E V to be the root of G. We use the structure of G to
construct a basis for S'(J).

For each vertex VE V, let vp be the (unique) parent of v in G, i.e., the
adjacent vertex in G that is closer to the root, v'. Given two vertices u and
v, if there is a path of edges joining them which does not contain the root,
then u is a descendent of v if v is closer to the root than u. With each vertex,
v E V, associate the affine form I r that vanishes on the (d - I )-simplex of J
which corresponds to the edge (v, up) in the graph. For the root vertex, v',
let I, .. = I.

For each v E V, define b; to have the value I~. + I on v and on all its
descendents and to have the value 0 on all other vertices. For instance, b;.
is I on each vertex. These b;. correspond to piecewise polynomials be on ,1.

It is clear that these b,. are actually in sr(J) and, in fact, {be: vE VV} is a
basis for the module sr(J).

Outside the simple stacked case just discussed it is not usually possible
to simply observe a basis. However, if the degrees of the module bases are
known then the module basis elements can be found via elementary linear
algebra methods. The following general result is useful.
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PROPOSITION 2.6. Let M he a Iree R-module with basis B. For any suhset
B i c B, if B; is another free hasis for <Bj > then (B - B i ) u B; is a basis
(or M.

Given the degrees of the basis elements, we find basis elements in the
order of their degree from the least degree up. We proceed by subsequently
finding bases of 5:,(,1) for the m for which we known there will be reduced
basis elements. First we develop the linear algebra for these computations.

THEOREM 2.7 [4]. Given a ,1 which is strongly connected and has
strongly connected links, let F be a piecewise polynomial function such that
FI G is a polynomial or degree ~m for each (J" EA. For r ~ 0, FE 5:,(,1) if and
only !lIor each pair (J", i' or adjacent d-simplices in A we have, ir T = (J" (l,'
is or dimension d - I and I is a nontrivial affine ,j(Jrm Irhich ranishes on T,

r+'I(FIG-FI;l.

Proof This result was used and proved in [4 and 18]. I
Thus we may consider the piecewise polynomial F = Ul' ...,Id E 5 r

( ,1),
where k is the number of d-faces in ,1, as the solution to the following
linear equations over the polynomial ring. For all (J" I E A d' let I = FI G,' and
when T = (J" j (l (J"j has dimension d - 1 let II) be a nontrivial affine form that
spans T. For each such T we get an equation

(2.8)

where gl} is a polynomial. If we wish to find solutions FE 5:'(,1) for some
specific m then we can make a set of linear equations over IR to replace
(2.8) as follows. In order for the polynomial relation (2.8) to hold it must
hold on the coefficients of each monomial X~I X;2 ... X~d, for all
rl + ... +rd~r. Let the matrix of these relations be Am; then 5;n(A) is the
null space of Am.

EXAMPLE. Consider the 2-complex consisting of two 2-simplexes that
meet along the line x = o. (/1' j~) E 5 r(,1) if and only if the Ii are polyno
mials, and there exists a polynomial g such that

fl -I2 + gyr + 1= O.

Further, letfi= I al}kxJ)l; then UI' j~)E 5:'(,1) if and only if aiik = 0 for all
J+ k ~ m and there exists a g = I hJkXJyk such that for all J, k where
J+k~m,

Note that the polynomial g only has terms with j + k ~ m - r - 1.
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We proceed with the discussion about how to find a reduced basis.
Suppose that the number of elements of degree m in a reduced basis is
known to be go, ..., gm' '00' g,. We know go = 1 always, and a basis element
of degree 0 can always be the global 1 function-the function whose value
is 1 everywhere. Assume that all the basis elements up to degree m - 1 have
been found. Suppose that m is the next integer such that gm # O. The
subspace of S;',,(A) generated by the module basis elements of degree m - 1 or
less will be S= {S;'" I(A) Uf~ IX,S;'" I(A)}, where xM = {(xm 1 , 00" xmd I
(m l , 00" mdE M}. The reduced basis elements of degree m will be the
vector space basis elements of the vector space S;',,(A liS.

The space S is the null space of the matrix given by the intersection of
the row spaces of d + 1 matrices. Each matrix represents the monomial
equations corresponding to the equations xd/; - ~ - g ;;l;, + I), where the I/s
are restricted to degree m - 1 or less. These matrices are each a permuta
tion of the columns of

" (Am IA= o

where Z is the matrix of all O's of the same number of rows as Am _ J and
enough columns to give A the same number of columns as Am. Let the
intersection of the row spaces of these matrices have basis rows
B= {bl' 00" bd.

PROPOSITION 2.9. The vector space S;',,(Ll )/S is isomorphic to the null
space 01 A",B', where B' is the transpose 01 B.

Proof Suppose that IES;',,(A)/S; then 1=I.).;b;. Thus S;',,(A)/S~

{A=p.• ,oo·,;·dIAmB'A'=O}. I
Thus Dc sr(A) is the set of elements of degree m for some reduced basis

if and only if D corresponds to a basis for the null space of Am B'.

EXAMPLE. We continue the previous example with a 2-dimensional
complex consisting of two regions that meet along the line x = O. (fl' 12, g)
is an element in SI(A) if II -12 + x 2g = O. It is clear by observation that a
reduced basis for this module will be (1, 1, 0) and (0, x 2

, 1). Consider how
the preceeding theory leads us to find the basis element of degree 2.

In the matrix A 2 given below, we show the correspondence between the
columns of the matrix and the coefficients of the monomials of11,/2, and
g. Similarly, we show the correspondence between the rows of the matrix
and the restrictions on the coefficients of monomials given by the equation
II -12 + x 2g = 0:
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x

II
X Y X

2 xy y2

.t~
1 x Y x2 X)' y2

-1

1
-1

g

x y

For convenience, we rewrite A2 as

A,=C6 -1(,

~}- 0 0 0

where

0 0 0

0 0 0

0 0 0
J=

1 0 0

0 0 0

0 0 0

Using the same ordering of the columns, AI is given by

The intersection of the row spaces of AI' xA I' and yA I is given by

Thus,

The basis element for the null space of A 2 8 1 is i, == (0, 0, 0, 1, 0, 0, - 2,
0, 0). Thus the new basis element for the null space of A 2 is given by
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B1,=(0, 0, 0, I, 0, 0, 0, 0, 0, 1,0,0, -2,0,0), that is,/,=x2'/2=x2
, and

g = - 2. This basis element is a linear combination (over!R) of the basis
elements observed at the outset.

3. SPECIAL CASE: GRADED MODULES

In this section we restrict our attention to the case where S'(LI) is a
graded module. R is a graded ring if there is a family {R,,: n > O} of sub
groups of R such that R = ® R" and R" R m c R" + m' A graded R-module M
is an R-module such that M = ® M", for subgroups M", with nEZ, and
R" M" eM" + m' An element mE M" is said to be homogeneous of degree n.
For example if A = !R[x}, x 2 , ••• , x,], then it is in fact a graded ring with
A" = <X'" : Iwl = n). In this example the degree of an element in A" is
equal to its degree as a polynomial in the usual sense.

For a graded k-algebra R, over a field k, define the Krull dimension,
dim R, to be the least number d of homogeneous elements of positive
degree, 0,,0 2 , ••• , ()", such that R/<fJ" ()2, ... , (),,) is a finite dimensional
k-vector space. In this case 0,,0 2 , •••, e" is a homogeneous system of
parameters for R. For a graded R-module M, define dim M to be the Krull
dimension of R/(AnnM), where AnnM={rERlrM=O}. A sequence
0,,0 2 , ••• , e" is a homogeneous system of parameters for M if
M/<e}, (}2, ... , O,,)M is a finite dimensional vector space over k. If S'(LI) is
graded, then since AnnS'(A)={O} we get that dimS'(LI)=dimA=d.
Also, (x" ..., x,,) is a homogeneous system of parameters for S'(I1).

THEOREM 3.1. Let M he a graded R-module such that M is free over
k[ e},°2 , .•• , 0,,], where e" (}2, ... , (J" is a homogeneous system of parameters
for M (i.e., M is Cohen-Macaulay). Let B = g l' '2' ..., ,,} EM be a set of
homogeneous elements in M. Then B is a hasis for Mover k[e}, (}2, ... , (J,,]
if and only (f the image of B is a k-hasis for M / <(} I'°2 , ... , 0,,).

Proof See, for example, [14] or [15]. I

PROPOSITIOI' 3.2. If 11 has only a single interior vertex and all (d - 1)
faces pass through that vertex, then S'(LI) is a graded A-module.

Proof Without loss of generality (see, for instance, [9 Sect. 1.3]) we
may assume that the interior vertex of LI is embedded at the origin. Then
each hyperplane I is homogeneous. Each equation (2.8) is graded with
respect to the total degree of monomials. That is, let f Im be the monomials
of f of degree m; then (fj, .f;, glj) satisfies (2.8) implies that
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Thus (fl' ·..,fd E S'(A) if and only if (fl' ..., fd IIn E S'(Ll), I.e., S'(Ll) is
graded. I

PROPOSITIO~ 3.3. If S'(Ll) is a free graded A-module then S'(Ll) has a
homogeneous module hasis.

Proof This is an application of Theorem 3.1. Consider the homogeneous
system of parameters (XI' x 2 , ... , Xci) for S'(A). S'(Ll)/(x l , X2' ... , Xci), as a
graded vector space over !R, will have some homogeneous vector space
basis. Hence, S'(Ll) has a homogeneous module basis. I

PROPOSITIOJ\; 3.4. A homogeneous free hasis B = {h j • h2 , ... , h,} is always
reduced.

Proof It suffices to consider homogeneous FE S'(Ll). Since B is a basis
F= L ;.;h;, where ;., E !R[x l , X 2 , .... Xci]. Group the monomials of each AI

such that ;.; = {; + J;, where deg {Ibl = deg For I'i = 0, and deg J,b;,= deg F.
Now F= L rib; + L b;h; implies that L J;b; = 0. Since B is a basis, J I = 0,
Vi. Thus F=L{lh, and degi',h,=degFor i',=O. I

By Proposition 2.6, if M is a free graded A-algebra and if B is a
homogeneous basis B = BouBI U uB,,, where B; = B n M" then if B;
is a basis for (B;), BouBI U u B; u ... u B" is a basis for M. In
particular, if a graded basis exists, it can be constructed as the union of the
vector space bases of the spaces M;=M;/(MouMlu,,, uM, l)nM;
for i = 0, 1,2, .... For instance, the zeroeth term is simply M o and the first
term is MI =MI/(xMo+ yMo). If the degrees of the basis elements are
known to be d l , d2 , ... , dk , say, then it is enough to consider the corre
sponding Md, This simplifies the work involved in trying to construct a
reduced module basis, since we need only consider a homogeneous set of
equations at each stage.

When d = 2 and Ll has only one interior vertex then dim S;,,(Ll) is given
in [12]:

{(

m+2)

dimS'(Ll)= 2
m m+l-r r+2 m-,

( 2 ) f~ + ( 2 ) +J~I (r + j + 1- je ) +

O";;m<r

m~r,

where f~ = ILl~1 is the number of interior edges of Ll and e is the number
of different slopes on the interior edges.
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In this case the third difference is

(e-I) (I-(~) )
e-I f

(
I +r)(e-I) -
e - 1 (

o

m=r+ 1

II +rJm=r+l+ --
e-I

II + rJm=r+2+ --
e-I

otherwise,

(3.5 )

where LpJ is the integer part of p and (p )f= p - LpJ. From (2.3),
gi = D3(i) in this case. For example, for L1 with one interior vertex and four
interior edges each with a different slope, the degrees of the basis elements
have been given in Table I. In Table I i is the degree of a basis element and
r is the degree of smoothness.

The calculation of (3.5) shows that for L1 with only one interior vertex
there will be only two values of i> r + 1 such that gi is not O. Each basis
element of degree r + 1 corresponds to a pair of (d - 1)-faces on the same
hyperplane. We can let the element be the function which is 0 on one side
of the hyperplane and r'" I on the other. Thus to find a basis using vector
space techniques we need only consider the two systems of equations for
degree > r + I.

4. CROSS-CUT GRIDS

Much work has been done towards the computation of the dimension
and the construction of bases for the class of multivariate splines on cross-

TABLE I

g, for L1 with One Interior Vertex and Four Interior Edges

1
2
3
4

r

2

2 3 4 5 .

2
3 0

2
2

ll+rJr+l+ -3- ll-+-rJr+2+ -3-
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cut grid partitions. In [7, 8] vector space bases for some classes of splines
on certain cross-cut grid partitions are discussed. This section extends that
work to module bases for S'(L1), when .1 is a cross-cut grid partition of a
disk. The main part of this section shows how finding bases for disks with
one interior vertex (as done in the previous section) comprises all the work
for finding a basis for S'(L1) when .1 is a cross-cut grid in [R2.

We develop a method for finding a basis for S'(L1) when .1 is a cross-cut
grid on a 2-dimensional disk. The process assumes that we can find bases
for certain local subcomplexes. Given a domain Dc [Rd and two complexes
1; and fl on D, 1: is a coarser subdivision than fl and fl is a finer sub
division than 1:, if (considered as subsets of D) whenever (j is a d-face of
fl then there is ad-face T of L such that T ::J (j.

PROPOSITION 4.1. Given a domain Dc [R" and two camp/exes 1: and fl
on D such that 1: is a coarser subdivision than fl, if f: D -+ [R is such that
fE S'(1:), then fE S'(fl).

Proof Any d-face (j of fl is contained in ad-face T of 1:, so that
f Ia =f I, E [R[X l' ... , X,,]. Further,fE S'(l:) means that fE S'(D), i.e.,fis cr,
so that fE S'(fl). I

Call a complex 1: a star camp/ex if either 1: has only one interior vertex
v and all interior edges of 1: are incident to v or 1: has no interior vertices.
Given a cross-cut grid .1 on a domain D and any vertex vE.1, we consider
a certain star complex 1:v on D which is a coarser subdivision on D then
.1. By Proposition 4.1, iffES'(1:.) then[ES'(L1). Given a splinefon .1, a
2-face (j E .1 is in the support off iff Ia i= O. The vertices of .1 can be ordered
in such a way that elements from each star basis can be used to reduce the
number of support faces.

Inductively define a total order on [Rd to be admissible as follows. For
every point p in [R" there exists a hyperplane such that every point on one
half space given by the hyperplane is greater than p and every point on the
other side of the hyperplane is less than p. Further, the induced ordering
on the hyperplane is admissible in [R" - I. The unique ordering on [R0 is
admissible. The usual orderings, lexicographic and graded lexicographic,
are both admissible orders.

Given a cross-cut grid .1 on a disk D, order the vertices of .1 using any
admissible ordering on [R2. Say the ordered vertices are VI' V2' ... , V n . For
each v,, associate a star complex l:j of v

J
defined as follows: Vi E1:j if and

only if i=j or v, is on the boundary of .1. For ii=ji=k, (Vi' vdE1:j if
(v" vd is on the boundary of A. (Vi' Vj) E l,'j if i ~ j and there exists a
cross-cut hyperplane I of .1 such that both viand VI lie on I. See Fig. 2 for
examples. In Fig. 2 lexicographic order has been used with x> y.

Define the least vertex of a 2-face (J to be the least vertex v with respect
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FIG. 2. L1 and some of its associated complexes 1',.

to the ordering ? such that v is a vertex of (J. Since ? is a total ordering
such a vertex is always uniquely determined.

In each 1:j defined above. all but perhaps one 2-face of 1:j will have v, as
least vertex. Let (JI be the 2-face with least vertex not equal to vj (if no such
2-face exists let (JI be the empty set). The face (Jj may be all of D. See Fig. 2
for examples. For each star complex 1:, such that (Jj"# D construct a basis
B, for the complex with the following properties. The global constant
function I is an element of the basis, where I is defined by II" = I for all
(J E 1:}' If bE B j and b"# t. then the support of h does not contain (Jj; i.e.,
b I", = O. By Proposition 4.1 the basis elements of B j can be considered as
functions in S'(L1).

THEOREM 4.2. :14 = [U( B j - {I} )u {I)] is a basis for S'(L1), where the
union is taken over J = {J: vj is a vertex of L1 and (Jj"# D}.

Proof For each vertex V j we get that IBj - {I} I is equal to the number
of 2-faces for which vj is the least vertex. The number of 2-faces in 1:j for
which VI is the least vertex is equal to the number of 2-faces in L1 for which
it is the least vertex. Hence, 1.s1t1 =1". Since it is known that rank of S'(L1)
is.f~ [II ] if.'1l spans then it is a module basis. To see that :1d spans consider
any fE S'(L1). The proof is by induction on the support of an e1ement( Let
vj • be the lowest vertex (with respect to ~) such that vj • is the least vertex
of some 2-face in the support off Assume first that j'" is the largest element
in J. In this case.f is in the span of the set Bj • - {I}.
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In generalletf' be the restriction of I to star.1(I:,o). By the choice of v,o,
it must be that f' I" 0 = O. Therefore we can consider f' as a function on
1).. Further,!' is in' the span of Br - {1}. So it is sufficient to show I-f'
is spanned by .5#. By construction, the least vertex of any 2-face in the
support off-I' will be greater than 1:,0. Hence. by induction,I-f' is in
the span of :Jd and thus f is as well. I

The construction of a basis of sr(,1) from bases for certain sr(1")
provides a means to calculate the dimension of sr(A) from the dimensions
of sr(1"). We have

( (m+ 2)) (m + 2)dim S~(,1) = L dim S;n(1",·) - 2 + 2 '
I' E' .10

where (m; 2) is the dimension of the global space. Equation (3.5) gives the
dimension of S~(..[r)' for I: an interior vertex. When v is a boundary vertex
and there are C,. interior edges then E, is stacked. Thus in this case the
dimension of S:,(Ej ) is given by (2.5). Since every interior edge of A is an
interior edge in exactly one star complex E, we have the following result.

THEOREM 4.3 [8, Theorem 3.1]. For a cross-cut grid ,1 on domain
Dc (R2 that is a disk, dim S:,(,1) = (m; 2) lor m:S; r and for m ~ r + I,

m + ,

+ L L (r + j + 1- je r ) +- •

"f: .1;; .i~ I

It was shown by Shumaker in [12 J that this number is a lower bound
for dim(S:,(,1)) for all ,1 c [R2. He also showed this to be the dimension in
certain cross-cut cases. Chui and Wang [7J showed this to be the dimen
sion of cross-cut grid spaces via vector space analysis.

The number of basis elements of each degree (g;(A)) for a reduced
module basis of ,1 can be computed either by taking differences of the
above formula for dim S;n(,1) or by summing the g;(L',,) over the vertices
of ,1 which were used in the consltruction of a basis for A. Note that while
the ordering of the vertices of A affects the basis constructed, since
dim S~(,1) is invariant, the g,(A) are invariant as well. The polynomial
p( t) = E ~,t' is just the sum of the polynomials corresponding to the star
complexes.

A cross-cut grid partition ,1 in d-space is simple if every vertex is the
intersection of exactly d hyperplanes (or equivalently if every (d - k )-face is
the intesection of exactly k hyperplanes). All I-dimensional connected com-
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plexes are simple cross-cuts. In 2-dimensional complexes a simple cross-cut
has exactly two hyperplanes meeting at any interior vertex. In [7] Chui
and Wang give a vector space basis for S;-"(A) for simple cross-cut when
d = 2 and comment that it is easy to find such a basis for general d.
A module basis for this case is presented below.

Let L1 be a simple cross-cut grid on a domain D in !Rd, with cross-cut
hyperplanes 11,/2 , ••• , I". For each cross-cut Ii' pick a "positive" side. Define
the piecewise polynomial B i on L1 by

if (x 1, ... , X d) is on the
positive side of I,

otherwise.

(4.5)

For each set t = {iI' i 2 , ... , id such that r l = II[ Il/i2 1l .. , 11 Ii, 11 D # 0,
define the piecewise polynomial B( on L1 by

BI=nB"
if: /

The Br are basis elements for the star complexes of L1. If 1tl = d then Br is
a basis element for the star complex of the interior vertex at r r' If 1 tl < d
then B r is a basis element for a boundary vertex on r,.

THEOREM 4.4. The set of B, and the glohal function 1on L1 together are
a hasis for S:,(L1).

Proof This proof is analogous to the proof of 4.2. I
The number of basis elements of degree k(r + I), denoted g(kr! k)' is

given by the number of sets t such that 1t I= d - k and r r # 0. For instance,
gr+ I = n, the number of hyperplanes that cross A. Define L k to be the
number of sets t such that 1 tl = d - k and r, # 0. By Eq. (2.1 ),

(
m-kr-k+j

dim S;-"(L1) = L L k d .
k(r + 1)~m

For example, we consider the special case given by Chui and Wang in
[7]. In this case let D be a domain bounded by hyperplanes normal to the
axes and let each of the cross-cut hyperplanes also be normal to some axis,
i.e., each hyperplane is given by an equation of the form Xi = i. for some
i= I, ... , d and some i.E!R. For each i, let Ci be the number of hyperplanes
that cross the interior which are parallel to the hyperplane Xi = O. Then
L 1 = C I + C 2 + ... + Cd' L d = C 1('2'" Cd' and in general

L k = L C
'1

('/2'" e
"

,
I ~ II < '2 < < h ~ d
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Fit;. 3. Quasi-cross-cut partitions.

A complex ,1, on a domain D in 2-dimensions, is a quasi-cross-cut
complex if for any line' which is the support of an edge (J of ,1, there is
some point (xo, Yo) E' (l D with the following property. Say D, =

{(x, Y)I(x, y»(xo, Yo)} and D_={(x,y)l(x,y)«xo,yo)} such that
either' (l D + c 11 ~ or '(l D c ,1~, or both. That is, each edge lies on either
a cross-cut or a half line that begins in D; see Fig. 3 for examples. In [8]
it is stated that the dimension given for cross-cut partitions in two
dimensions, (4.3), also holds for quasi-cross-cuts.

In the following situation there is a basis for sr(,1). Suppose that there
is a total ordering on the vertices of ,1 such that for each vertex v, any edge
e incident to 1: lies on a quasi-cross-cut I such that the associated point
(xo, Yo) is less than 1:. That is, every edge extends in the positive direction
from each vertex on which it is incident. In Fig. 3a lexicographic order with
x <y is such an order. In Fig. 3b there is no such order. If there is such an
ordering then a basis for sr(ll) can be construced as in the cross-cut case.
The proof of this is exactly the same as the proof of the cross-cut case.

5. REDUCED GENERATING SETS AND GROBl"ER BASES

Many of the ideas of this paper can be used even if there is not a reduced
free basis for the module sr(,1). A generating set {hi}, for a module M,
over the polynomial ring, is reduced if for any mE M there exists a
representation m = l:i.;bi, such that deg i'ih; ~ deg m, for all i such that
i.; #- O. Given a generating set, there are relations between the generators,
i.e., polynomials PI' ..., Pk' such that Epih; = O. We define the degree of this
relation to be the degree of the highest monomial of l:p,b,. There exists a
reduced generating set for this module of relations. Further, there may be
relations between the relations, etc. Given such a reduced generating set
define gOi to be the number of generating elements of degree i, gli to be the
number of relations between the generators of degree i, g2, to be the
number of relations between relations of degree i, etc. The results of
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Section 2 extend to the case when S'(A) has a reduced generating set. In
this case,

and so

m

Dd
+ I(m) = L (-I)' gim'

i-:-O

An alternative approach to finding reduced bases for any module is via
the technique of Grabner Bases. This is an algorithm which can find a
reduced generating set and the resolution of the module (the generating set
and the relations between the generators and the relations between the
relations etc.). This algorithm can always be used to find a reduced
generating set for S'(A); however, it may not lead to a reduced basis even
when one exists. For a detailed discussion on the use of the Grabner Basis
Theory and its applications to the module S'(A), see [9, II ].
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